All matter is composed of atoms. The Periodic Table of Elements lists all known types of atoms and their properties. The atom is comprised of:
- Electrons – Particles with a negative charge that orbit the nucleus
- Nucleus – The center part of the atom, composed of protons and neutrons
- Protons – Particles with a positive charge
- Neutrons – Particles with no charge (neutral)
To help explain the electrical properties of elements/materials, locate helium (He) on the periodic table. Helium has an atomic number of 2, which means that helium has 2 protons and 2 electrons. It has an atomic weight of 4. By subtracting the atomic number (2) from the atomic weight (4), it is learned that helium also has 2 neutrons.
The Danish physicist, Niels Bohr, developed a simplified model to illustrate the atom. This illustration shows the model for a helium atom. If the protons and neutrons of an atom were the size of an adult (#5) soccer ball in the middle of a soccer field, the only thing smaller than the ball would be the electrons. The electrons would be the size of cherries and would be orbiting near the outer-most seats of the stadium. In other words, the overall volume of this atom, including the electron path, would be about the size of the stadium. The nucleus of the atom where the protons and neutrons exist would be the size of the soccer ball.
One of the laws of nature, called Coulomb's Electric Force Law, states that opposite charges react to each other with a force that causes them to be attracted to each other. Like charges react to each other with a force that causes them to repel each other. In the case of opposite and like charges, the force increases as the charges move closer to each other. The force is inversely proportional to the square of the separation distance. When particles get extremely close together, nuclear force overrides the repulsive electrical force and keeps the nucleus together. That is why a nucleus does not fly apart.
Examine Bohr's model of the helium atom. If Coulomb's law is true, and if Bohr's model describes helium atoms as stable, then there must be other laws of nature at work. How can they both be true?
- Coulomb's Law – Opposite charges attract and like charges repel.
- Bohr’s model – Protons are positive charges and electrons are negative charges. There is more than 1 proton in the nucleus.
Electrons stay in orbit, even though the protons attract the electrons. The electrons have just enough velocity to keep orbiting and not be pulled into the nucleus, just like the moon around the Earth.
Protons do not fly apart from each other because of a nuclear force that is associated with neutrons. The nuclear force is an incredibly strong force that acts as a kind of glue to hold the protons together.
The protons and neutrons are bound together by a very powerful force. However, the electrons are bound to their orbit around the nucleus by a weaker force. Electrons in certain atoms, such as metals, can be pulled free from the atom and made to flow. This sea of electrons, loosely bound to the atoms, is what makes electricity possible. Electricity is a free flow of electrons.
Loosened electrons that stay in one place, without moving, and with a negative charge, are called static electricity. If these static electrons have an opportunity to jump to a conductor, this can lead to electrostatic discharge (ESD). A discussion on conductors follows later in this chapter.
ESD, though usually harmless to people, can create serious problems for sensitive electronic equipment. A static discharge can randomly damage computer chips, data, or both. The logical circuitry of computer chips is extremely sensitive to electrostatic discharge. Use caution when working inside a computer, router, and so on.
Atoms, or groups of atoms called molecules, can be referred to as materials. Materials are classified as belonging to one of three groups depending on how easily electricity, or free electrons, flows through them.
The basis for all electronic devices is the knowledge of how insulators, conductors and semiconductors control the flow of electrons and work together in various combinations.
VoltageVoltage is sometimes referred to as electromotive force (EMF). EMF is related to an electrical force, or pressure, that occurs when electrons and protons are separated. The force that is created pushes toward the opposite charge and away from the like charge. This process occurs in a battery, where chemical action causes electrons to be freed from the negative terminal of the battery. The electrons then travel to the opposite, or positive, terminal through an EXTERNAL circuit. The electrons do not travel through the battery itself. Remember that the flow of electricity is really the flow of electrons. Voltage can also be created in three other ways. The first is by friction, or static electricity. The second way is by magnetism, or electric generator. The last way that voltage can be created is by light, or solar cell.
Voltage is related to the electrical fields emanating from the charges associated with particles such as protons, electrons, etc. Voltage is represented by the letter V, and sometimes by the letter E, for electromotive force. The unit of measurement for voltage is volt (V). Volt is defined as the amount of work, per unit charge, needed to separate the charges.
Resistance and impedance
The materials through which current flows offer varying amounts of opposition, or resistance to the movement of the electrons. The materials that offer very little, or no, resistance, are called conductors. Those materials that do not allow the current to flow, or severely restrict its flow, are called insulators. The amount of resistance depends on the chemical composition of the materials. All materials that conduct electricity have a measure of resistance to the flow of electrons through them. These materials also have other effects called capacitance and inductance associated with the flow of electrons. The three characteristics comprise impedance, which is similar to and includes resistance. The term attenuation is important when learning about networks. Attenuation refers to the resistance to the flow of electrons and why a signal becomes degraded as it travels along the conduit. The letter R represents resistance. The unit of measurement for resistance is the ohm . The symbol comes from the Greek letter , omega. Electrical insulators, or insulators, are materials that allow electrons to flow through them with great difficulty, or not at all. Examples of electrical insulators include plastic, glass, air, dry wood, paper, rubber, and helium gas. These materials have very stable chemical structures, with orbiting electrons tightly bound within the atoms. Electrical conductors, usually just called conductors, are materials that allow electrons to flow through them with great ease. They flow easily because the outermost electrons are bound very loosely to the nucleus, and are easily freed. At room temperature, these materials have a large number of free electrons that can provide conduction. The introduction of voltage causes the free electrons to move, resulting in a current flow. The periodic table categorizes some groups of atoms by listing them in the form of columns. The atoms in each column belong to particular chemical families. Although they may have different numbers of protons, neutrons, and electrons, their outermost electrons have similar orbits and behave similarly when interacting with other atoms and molecules. The best conductors are metals, such as copper (Cu), silver (Ag), and gold (Au), because they have electrons that are easily freed. Other conductors include solder, a mixture of lead (Pb) and tin (Sn), and water with ions. An ion is an atom that has more electrons, or fewer electrons, than the number of protons in the nucleus of the atom. The human body is made of approximately 70% water with ions, which means that the human body is a conductor. Semiconductors are materials where the amount of electricity they conduct can be precisely controlled. These materials are listed together in one column of the periodic chart. Examples include carbon (C), germanium (Ge), and the alloy, gallium arsenide (GaAs). The most important semiconductor which makes the best microscopic-sized electronic circuits is silicon (Si). Silicon is very common and can be found in sand, glass, and many types of rocks. The region around San Jose, California is known as Silicon Valley because the computer industry, which depends on silicon microchips, started in that area Current
|
0 comments:
Post a Comment