The concept of layers is used to describe communication from one computer to another. Figure shows a set of questions that are related to flow, which is defined as the motion through a system of either physical or logical objects. These questions show how the concept of layers helps describe the details of the flow process. This process could be any kind of flow, from the flow of traffic on a highway system to the flow of data through a network. Figure shows several examples of flow and ways that the flow process can be broken down into details or layers.
A conversation between two people provides a good opportunity to use a layered approach to analyze information flow. In a conversation, each person wishing to communicate begins by creating an idea. Then a decision is made on how to properly communicate the idea. For example, a person could decide to speak, sing or shout, and what language to use. Finally the idea is delivered. For example, the person creates the sound which carries the message.
This process can be broken into separate layers that may be applied to all conversations. The top layer is the idea that will be communicated. The middle layer is the decision on how the idea is to be communicated. The bottom layer is the creation of sound to carry the communication.
The same method of layering explains how a computer network distributes information from a source to a destination. When computers send information through a network, all communications originate at a source then travel to a destination.
The information that travels on a network is generally referred to as data or a packet. A packet is a logically grouped unit of information that moves between computer systems. As the data passes between layers, each layer adds additional information that enables effective communication with the corresponding layer on the other computer.
The OSI and TCP/IP models have layers that explain how data is communicated from one computer to another. The models differ in the number and function of the layers. However, each model can be used to help describe and provide details about the flow of information from a source to a destination.
Using layers to describe data communication
In order for data packets to travel from a source to a destination on a network, it is important that all the devices on the network speak the same language or protocol. A protocol is a set of rules that make communication on a network more efficient. For example, while flying an airplane, pilots obey very specific rules for communication with other airplanes and with air traffic control. A data communications protocol is a set of rules or an agreement that determines the format and transmission of data. Layer 4 on the source computer communicates with Layer 4 on the destination computer. The rules and conventions used for this layer are known as Layer 4 protocols. It is important to remember that protocols prepare data in a linear fashion. A protocol in one layer performs a certain set of operations on data as it prepares the data to be sent over the network. The data is then passed to the next layer where another protocol performs a different set of operations. Once the packet has been sent to the destination, the protocols undo the construction of the packet that was done on the source side. This is done in reverse order. The protocols for each layer on the destination return the information to its original form, so the application can properly read the data. |
OSI model
The early development of networks was disorganized in many ways. The early 1980s saw tremendous increases in the number and size of networks. As companies realized the advantages of using networking technology, networks were added or expanded almost as rapidly as new network technologies were introduced. By the mid-1980s, these companies began to experience problems from the rapid expansion. Just as people who do not speak the same language have difficulty communicating with each other, it was difficult for networks that used different specifications and implementations to exchange information. The same problem occurred with the companies that developed private or proprietary networking technologies. Proprietary means that one or a small group of companies controls all usage of the technology. Networking technologies strictly following proprietary rules could not communicate with technologies that followed different proprietary rules. To address the problem of network incompatibility, the International Organization for Standardization (ISO) researched networking models like Digital Equipment Corporation net (DECnet), Systems Network Architecture (SNA), and TCP/IP in order to find a generally applicable set of rules for all networks. Using this research, the ISO created a network model that helps vendors create networks that are compatible with other networks. The Open System Interconnection (OSI) reference model released in 1984 was the descriptive network model that the ISO created. It provided vendors with a set of standards that ensured greater compatibility and interoperability among various network technologies produced by companies around the world. The OSI reference model has become the primary model for network communications. Although there are other models in existence, most network vendors relate their products to the OSI reference model. This is especially true when they want to educate users on the use of their products. It is considered the best tool available for teaching people about sending and receiving data on a network. |
The OSI reference model is a framework that is used to understand how information travels throughout a network. The OSI reference model explains how packets travel through the various layers to another device on a network, even if the sender and destination have different types of network media. In the OSI reference model, there are seven numbered layers, each of which illustrates a particular network function. Dividing the network into seven layers provides the following advantages:
|
In order for data to travel from the source to the destination, each layer of the OSI model at the source must communicate with its peer layer at the destination. This form of communication is referred to as peer-to-peer. During this process, the protocols of each layer exchange information, called protocol data units (PDUs). Each layer of communication on the source computer communicates with a layer-specific PDU, and with its peer layer on the destination computer as illustrated in Figure . Data packets on a network originate at a source and then travel to a destination. Each layer depends on the service function of the OSI layer below it. To provide this service, the lower layer uses encapsulation to put the PDU from the upper layer into its data field; then it adds whatever headers and trailers the layer needs to perform its function. Next, as the data moves down through the layers of the OSI model, additional headers and trailers are added. After Layers 7, 6, and 5 have added their information, Layer 4 adds more information. This grouping of data, the Layer 4 PDU, is called a segment. The network layer provides a service to the transport layer, and the transport layer presents data to the internetwork subsystem. The network layer has the task of moving the data through the internetwork. It accomplishes this task by encapsulating the data and attaching a header creating a packet (the Layer 3 PDU). The header contains information required to complete the transfer, such as source and destination logical addresses. The data link layer provides a service to the network layer. It encapsulates the network layer information in a frame (the Layer 2 PDU). The frame header contains information (for example, physical addresses) required to complete the data link functions. The data link layer provides a service to the network layer by encapsulating the network layer information in a frame. The physical layer also provides a service to the data link layer. The physical layer encodes the data link frame into a pattern of 1s and 0s (bits) for transmission on the medium (usually a wire) at Layer 1. |
The historical and technical standard of the Internet is the TCP/IP model. The U.S. Department of Defense (DoD) created the TCP/IP reference model, because it wanted to design a network that could survive any conditions, including a nuclear war. In a world connected by different types of communication media such as copper wires, microwaves, optical fibers and satellite links, the DoD wanted transmission of packets every time and under any conditions. This very difficult design problem brought about the creation of the TCP/IP model.
Unlike the proprietary networking technologies mentioned earlier, TCP/IP was developed as an open standard. This meant that anyone was free to use TCP/IP. This helped speed up the development of TCP/IP as a standard.
The TCP/IP model has the following four layers:
- Application layer
- Transport layer
- Internet layer
- Network access layer
Although some of the layers in the TCP/IP model have the same name as layers in the OSI model, the layers of the two models do not correspond exactly. Most notably, the application layer has different functions in each model.
The designers of TCP/IP felt that the application layer should include the OSI session and presentation layer details. They created an application layer that handles issues of representation, encoding, and dialog control.
The transport layer deals with the quality of service issues of reliability, flow control, and error correction. One of its protocols, the transmission control protocol (TCP), provides excellent and flexible ways to create reliable, well-flowing, low-error network communications.
TCP is a connection-oriented protocol. It maintains a dialogue between source and destination while packaging application layer information into units called segments. Connection-oriented does not mean that a circuit exists between the communicating computers. It does mean that Layer 4 segments travel back and forth between two hosts to acknowledge the connection exists logically for some period.
The purpose of the Internet layer is to divide TCP segments into packets and send them from any network. The packets arrive at the destination network independent of the path they took to get there. The specific protocol that governs this layer is called the Internet Protocol (IP). Best path determination and packet switching occur at this layer.
The relationship between IP and TCP is an important one. IP can be thought to point the way for the packets, while TCP provides a reliable transport.
The name of the network access layer is very broad and somewhat confusing. It is also known as the host-to-network layer. This layer is concerned with all of the components, both physical and logical, that are required to make a physical link. It includes the networking technology details, including all the details in the OSI physical and data link layers.
Figure illustrates some of the common protocols specified by the TCP/IP reference model layers. Some of the most commonly used application layer protocols include the following:
- File Transfer Protocol (FTP)
- Hypertext Transfer Protocol (HTTP)
- Simple Mail Transfer Protocol (SMTP)
- Domain Name System (DNS)
- Trivial File Transfer Protocol (TFTP)
The common transport layer protocols include:
- Transport Control Protocol (TCP)
- User Datagram Protocol (UDP)
The primary protocol of the Internet layer is:
- Internet Protocol (IP)
The network access layer refers to any particular technology used on a specific network.
Regardless of which network application services are provided and which transport protocol is used, there is only one Internet protocol, IP. This is a deliberate design decision. IP serves as a universal protocol that allows any computer anywhere to communicate at any time.
A comparison of the OSI model and the TCP/IP models will point out some similarities and differences.
Similarities include:
- Both have layers.
- Both have application layers, though they include very different services.
- Both have comparable transport and network layers.
- Both models need to be known by networking professionals.
- Both assume packets are switched. This means that individual packets may take different paths to reach the same destination. This is contrasted with circuit-switched networks where all the packets take the same path.
Differences include:
- TCP/IP combines the presentation and session layer issues into its application layer.
- TCP/IP combines the OSI data link and physical layers into the network access layer.
- TCP/IP appears simpler because it has fewer layers.
- TCP/IP protocols are the standards around which the Internet developed, so the TCP/IP model gains credibility just because of its protocols. In contrast, networks are not usually built on the OSI protocol, even though the OSI model is used as a guide.
Although TCP/IP protocols are the standards with which the Internet has grown, this curriculum will use the OSI model for the following reasons:
- It is a generic, protocol-independent standard.
- It has more details, which make it more helpful for teaching and learning.
- It has more details, which can be helpful when troubleshooting.
Networking professionals differ in their opinions on which model to use. Due to the nature of the industry it is necessary to become familiar with both. Both the OSI and TCP/IP models will be referred to throughout the curriculum. The focus will be on the following:
- TCP as an OSI Layer 4 protocol
- IP as an OSI Layer 3 protocol
- Ethernet as a Layer 2 and Layer 1 technology
Detailed encapsulation process
All communications on a network originate at a source, and are sent to a destination. The information sent on a network is referred to as data or data packets. If one computer (host A) wants to send data to another computer (host B), the data must first be packaged through a process called encapsulation. Encapsulation wraps data with the necessary protocol information before network transit. Therefore, as the data packet moves down through the layers of the OSI model, it receives headers, trailers, and other information. To see how encapsulation occurs, examine the manner in which data travels through the layers as illustrated in Figure . Once the data is sent from the source, it travels through the application layer down through the other layers. The packaging and flow of the data that is exchanged goes through changes as the layers perform their services for end users. As illustrated in Figure , networks must perform the following five conversion steps in order to encapsulate data:
|
|
0 comments:
Post a Comment