My new domain network Management

Obtaining an IP address

Obtaining an Internet address


A network host needs to obtain a globally unique address in order to function on the Internet. The physical or MAC address that a host has is only locally significant, identifying the host within the local area network. Since this is a Layer 2 address, the router does not use it to forward outside the LAN.

IP addresses are the most commonly used addresses for Internet communications. This protocol is a hierarchical addressing scheme that allows individual addresses to be associated together and treated as groups. These groups of addresses allow efficient transfer of data across the Internet.

Network administrators use two methods to assign IP addresses. These methods are static and dynamic. Later in this lesson, static addressing and three variations of dynamic addressing will be covered. Regardless of which addressing scheme is chosen, no two interfaces can have the same IP address. Two hosts that have the same IP address could create a conflict that might cause both of the hosts involved not to operate properly. As shown in Figure , the hosts have a physical address by having a network interface card that allows connection to the physical medium.

Static assignment of an IP address

Static assignment works best on small, infrequently changing networks. The system administrator manually assigns and tracks IP addresses for each computer, printer, or server on the intranet. Good recordkeeping is critical to prevent problems which occur with duplicate IP addresses. This is possible only when there are a small number of devices to track.

Servers should be assigned a static IP address so workstations and other devices will always know how to access needed services. Consider how difficult it would be to phone a business that changed its phone number every day.

Other devices that should be assigned static IP addresses are network printers, application servers, and routers.

RARP IP address assignment


Reverse Address Resolution Protocol (RARP) associates a known MAC addresses with an IP addresses. This association allows network devices to encapsulate data before sending the data out on the network. A network device, such as a diskless workstation, might know its MAC address but not its IP address. RARP allows the device to make a request to learn its IP address. Devices using RARP require that a RARP server be present on the network to answer RARP requests.

Consider an example where a source device wants to send data to another device. In this example, the source device knows its own MAC address but is unable to locate its own IP address in the ARP table. The source device must include both its MAC address and IP address in order for the destination device to retrieve data, pass it to higher layers of the OSI model, and respond to the originating device. Therefore, the source initiates a process called a RARP request. This request helps the source device detect its own IP address. RARP requests are broadcast onto the LAN and are responded to by the RARP server which is usually a router.

RARP uses the same packet format as ARP. However, in a RARP request, the MAC headers and "operation code" are different from an ARP request. The RARP packet format contains places for MAC addresses of both the destination and source devices. The source IP address field is empty. The broadcast goes to all devices on the network. Therefore, the destination MAC address will be set to all binary 1s. Workstations running RARP have codes in ROM that direct them to start the RARP process. A step-by-step layout of the RARP process is illustrated in Figures through


BOOTP IP address assignment


The bootstrap protocol (BOOTP) operates in a client-server environment and only requires a single packet exchange to obtain IP information. However, unlike RARP, BOOTP packets can include the IP address, as well as the address of a router, the address of a server, and vendor-specific information.

One problem with BOOTP, however, is that it was not designed to provide dynamic address assignment. With BOOTP, a network administrator creates a configuration file that specifies the parameters for each device. The administrator must add hosts and maintain the BOOTP database. Even though the addresses are dynamically assigned, there is still a one to one relationship between the number of IP addresses and the number of hosts. This means that for every host on the network there must be a BOOTP profile with an IP address assignment in it. No two profiles can have the same IP address. Those profiles might be used at the same time and that would mean that two hosts have the same IP address.

A device uses BOOTP to obtain an IP address when starting up. BOOTP uses UDP to carry messages. The UDP message is encapsulated in an IP packet. A computer uses BOOTP to send a broadcast IP packet using a destination IP address of all 1s, 255.255.255.255 in dotted decimal notation. A BOOTP server receives the broadcast and then sends back a broadcast. The client receives a frame and checks the MAC address. If the client finds its own MAC address in the destination address field and a broadcast in the IP destination field, it takes and stores the IP address and other information supplied in the BOOTP reply message. A step-by-step description of the process is shown in Figures through

DHCP IP address management


Dynamic host configuration protocol (DHCP) is the successor to BOOTP. Unlike BOOTP, DHCP allows a host to obtain an IP address dynamically without the network administrator having to set up an individual profile for each device. All that is required when using DHCP is a defined range of IP addresses on a DHCP server. As hosts come online, they contact the DHCP server and request an address. The DHCP server chooses an address and leases it to that host. With DHCP, the entire network configuration of a computer can be obtained in one message. This includes all of the data supplied by the BOOTP message, plus a leased IP address and a subnet mask.

The major advantage that DHCP has over BOOTP is that it allows users to be mobile. This mobility allows the users to freely change network connections from location to location. It is no longer required to keep a fixed profile for every device attached to the network as was required with the BOOTP system. The importance to this DHCP advancement is its ability to lease an IP address to a device and then reclaim that IP address for another user after the first user releases it. This means that DHCP offers a one to many ratio of IP addresses and that an address is available to anyone who connects to the network.

Problems in address resolution

One of the major problems in networking is how to communicate with other network devices. In TCP/IP communications, a datagram on a local-area network must contain both a destination MAC address and a destination IP address. These addresses must be correct and match the destination MAC and IP addresses of the host device. If it does not match, the datagram will be discarded by the destination host. Communications within a LAN segment require two addresses. There needs to be a way to automatically map IP to MAC addresses. It would be too time consuming for the user to create the maps manually. The TCP/IP suite has a protocol, called Address Resolution Protocol (ARP), which can automatically obtain MAC addresses for local transmission. Different issues are raised when data is sent outside of the local area network.

Communications between two LAN segments have an additional task. Both the IP and MAC addresses are needed for both the destination host and the intermediate routing device. TCP/IP has a variation on ARP called Proxy ARP that will provide the MAC address of an intermediate device for transmission outside the LAN to another network segment.

Address Resolution Protocol (ARP)

With TCP/IP networking, a data packet must contain both a destination MAC address and a destination IP address. If the packet is missing either one, the data will not pass from Layer 3 to the upper layers. In this way, MAC addresses and IP addresses act as checks and balances for each other. After devices determine the IP addresses of the destination devices, they can add the destination MAC addresses to the data packets.

Some devices will keep tables that contain MAC addresses and IP addresses of other devices that are connected to the same LAN. These are called Address Resolution Protocol (ARP) tables. ARP tables are stored in RAM memory, where the cached information is maintained automatically on each of the devices. It is very unusual for a user to have to make an ARP table entry manually. Each device on a network maintains its own ARP table. When a network device wants to send data across the network, it uses information provided by the ARP table.

When a source determines the IP address for a destination, it then consults the ARP table in order to locate the MAC address for the destination. If the source locates an entry in its table, destination IP address to destination MAC address, it will associate the IP address to the MAC address and then uses it to encapsulate the data. The data packet is then sent out over the networking media to be picked up by the destination device.

There are two ways that devices can gather MAC addresses that they need to add to the encapsulated data. One way is to monitor the traffic that occurs on the local network segment. All stations on an Ethernet network will analyze all traffic to determine if the data is for them. Part of this process is to record the source IP and MAC address of the datagram to an ARP table. So as data is transmitted on the network, the address pairs populate the ARP table. Another way to get an address pair for data transmission is to broadcast an ARP request.

The computer that requires an IP and MAC address pair broadcasts an ARP request. All the other devices on the local area network analyze this request. If one of the local devices matches the IP address of the request, it sends back an ARP reply that contains its IP-MAC pair. If the IP address is for the local area network and the computer does not exist or is turned off, there is no response to the ARP request. In this situation, the source device reports an error. If the request is for a different IP network, there is another process that can be used.

Routers do not forward broadcast packets. If the feature is turned on, a router performs a proxy ARP. Proxy ARP is a variation of the ARP protocol. In this variation, a router sends an ARP response with the MAC address of the interface on which the request was received, to the requesting host. The router responds with the MAC addresses for those requests in which the IP address is not in the range of addresses of the local subnet.

Another method to send data to the address of a device that is on another network segment is to set up a default gateway. The default gateway is a host option where the IP address of the router interface is stored in the network configuration of the host. The source host compares the destination IP address and its own IP address to determine if the two IP addresses are located on the same segment. If the receiving host is not on the same segment, the source host sends the data using the actual IP address of the destination and the MAC address of the router. The MAC address for the router was learned from the ARP table by using the IP address of that router.

If the default gateway on the host or the proxy ARP feature on the router is not configured, no traffic can leave the local area network. One or the other is required to have a connection outside of the local area network.

Cisco Systems, Inc.

0 comments:

Post a Comment